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Statistics of S-matrix poles for chaotic systems with broken time reversal invariance:
A conjecture

Yan V. Fyodorov,1,2 Mikhail Titov,2 and Hans-Ju¨rgen Sommers1
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In the framework of a random matrix description of chaotic quantum scattering the positions ofS-matrix
poles are given by complex eigenvaluesZi of an effective non-Hermitian random-matrix Hamiltonian. We put
forward a conjecture on statistics ofZi for systems with broken time-reversal invariance and verify that it
allows to reproduce statistical characteristics of Wigner time delays known from independent calculations. We
analyze the ensuing two-point statistical measures as, e.g., spectral form factor and the number variance. In
addition, we find the density of complex eigenvalues of real asymmetric matrices generalizing the recent result
by Efetov @Phys. Rev. B.56, 9630~1997!#.
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One of the basic concepts in chaotic quantum scatterin
the notion of resonances, representing long-lived interm
ate states to which bound states of a ‘‘closed’’ system
converted due to coupling to continua. On a formal le
resonances show up as poles of theM3M scattering matrix
Sab(E) occurring at complex energiesEk5Ek2( i /2)Gk ,
where Ek is called the position andGk the widths of the
corresponding resonance, andM is the number of channel
open in a given interval of energies. Recently, advance
computational techniques made available resonance pat
of high accuracy to be obtained for realistic models
atomic and molecular chaotic systems@1#.

As is well-known, universal statistical properties of bou
states in the regime of quantum chaos have their patter
statistics of real eigenvalues of large random matrices@2,3#.
The methods to adjust random matrix description to the c
of resonance scattering in open quantum systems are
well known since the pioneering work by the Heidelbe
group@4#. The method proved to be very fruitful and allowe
one to calculate different universal characteristics of cha
scattering; see the review@5# for a thorough discussion o
recent developments.

In the framework of this approach the S-matrix pol
~resonances! are just the complex eigenvalues of an effect
random matrix HamiltonianHe f f5H2 iG. HereH is a large
self-adjointN3N matrix of appropriate symmetry serving t
describe the statistical properties of theclosedcounterpart of
the scattering system under consideration. TheN3N matrix
G is to describe a possibility of transitions from the sta
described byH to the outer world viaM open channels and
is related to theN3M matrix W of transition amplitudes as
G5pWW†. Such a form is actually dictated by the requir
ment ofS-matrix unitarity and ensures that all theS-matrix
poles are in the lower half-plane of complex energies as
quired by causality.

In spite of quite substantial analytical@6,7,5# and numeri-
cal @8# work on properties ofHe f f our actual knowledge o
resonance statistics is rather limited. Apart from the simp
perturbative Porter-Thomas treatment@9# ~as well as its more
PRE 581063-651X/98/58~2!/1195~4!/$15.00
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advanced variants@10#! the results available on statistics o
S-matrix poles are~i! the joint probability density of all reso
nances for the system with one open channel@6#, ~ii ! the
mean density ofS-matrix poles in the complex plane fo
large number of open channelsM;N@1 @7#, ~iii ! the mean
density ofS-matrix poles for arbitraryM!N @5#. In particu-
lar, no information about two-point correlations between d
ferent poles is available to our best knowledge.

The situation improves drastically if one considersH to
be taken from the Gaussian unitary ensemble~GUE! and
replaces the physically motivated matrixG introduced above
by an ~unphysical! N3N Hermitian matrix A, taken also
from GUE.

The case in which the variance of bothH andA coincide
was studied long ago by Ginibre@11#, who managed to find
all the correlation functions of the eigenvalues in the co
plex plane. They turned out to be quite different from tho
known for the self-adjoint Gaussian random matrices w
real eigenvalues, studied by Wigner, Dyson, Mehta and o
ers @2#.

At the same time it is clear that reducing the variance oA
as compared to that ofH drives the ensemble towards GUE
The existence of a nontrivial regime ofweak non-Hermiticity
was recognized in our preceding works@12,13#. This regime
occurs when TrA2; 1/N TrH2 in the limit of largeN. Under
this condition the imaginary partYk of a typical complex
eigenvalueZk5xk2 iYk is comparable with the meansepa-
ration D5^xk2xk11&; 1/N between neighboring eigenva
ues along the real axis. Exploiting the method of orthogo
polynomials we demonstrated@13# that all statistical proper-
ties ofH5H2 iA in this case~which we refer to as ‘‘almost
GUE’’ ! can be described in terms of a kernelK(Z1 ,Z2) de-
pending on two complex coordinatesZ1,2.

In particular, the mean eigenvalue density around
point Z in the complex planer(Z)5^(kd

(2)(Z2Zk)& is
given by r(Z)5K(Z,Z) and the two-pointcluster function
Y2(Z1 ,Z2) defined via the relation

^r~Z1!r~Z2!&c5^r~Z!&d~2!~Z12Z2!2Y2~Z1 ,Z2! ~1!
R1195 © 1998 The American Physical Society
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is given byY2(Z1 ,Z2)5uK(Z1 ,Z2)u2. Here and henceforth
we use the notation̂AB&c5^AB&2^A&^B&, with brackets
standing for the ensemble average.

Unfortunately, such a detailed information is of no dire
use for the case of chaotic scattering. Nevertheless, the
sights provided by the ‘‘almost GUE’’ case combined wi
the existent knowledge of the resonance statistics for syst
with broken time-reversal invariance@5# allowed us to put
forward a well-grounded conjecture about statistics of co
plex eigenvalues of weakly non-Hermitian ensemble of
typeH2 iG for anygiven complex Hermitian matrixG, pro-
videdH is taken from GUE. This conjecture forms the ma
part of the present paper.

Before formulating the conjecture, let us recall that t
GUE ensemble is aninvariant one, i.e., its statistics are in
dependent of the basis chosen. Therefore, one always ca

to the eigenbasis of the matrixĜ and consider it to be diag
onal with eigenvaluesg i , i 51, . . . ,N. In what follows we

find it convenient to characterize the matrixĜ by the follow-
ing function:

f G~v !5(
i

lnS 11
v

pn~x!gi
D , ~2!

where gi51/2pn(x) (g i1g i
21) and n(x)5 1/2p A42x2

stands for the Wigner semicircular density of real eigenv
ues of the Hermitian partĤ of the matricesH.

Let us define now the regime of weak non-Hermiticity
such whenTrG2; 1/N TrH2. Under this condition the func
tion f G(v) defined above has a finite limit whenN→`. We
also expect that in the regime of weak non-Hermiticity
nontrivial behavior occurs on the scale ImZ1;Im Z2
;Re(Z12Z2);N21. To take this fact into account explicitly
it is convenient to use the parametrizationZ1,25x6v/2N
2 iy1,2/N, with y1,2,v being fixed in the limitN→`.

Now we put forward the followingconjecture:
The statistics of eigenvaluesZi of the corresponding al

most Hermitian ensembleHe f f in the limit N@1 is com-
pletely determined by the kernel

K~Z1 ,Z2!5
N2

4p2 eix/2 ~y22y1!

3E
2pnsc~x!

pnsc~x!

due2u~y11y2!1 iuv1 f G~u!

3S E
2`

`

dk1e2 ik1y12 f G~2 ik1/2!

3E
2`

`

dk2e2 ik2y22 f G~2 ik2/2!D 1/2

. ~3!

In particular, the mean eigenvalue densityr(Z)
5^(kd

(2)(Z2Zk)& is given byr(Z)5K(Z,Z) and the two-
point cluster function isY2(Z1 ,Z2)5uK(Z1 ,Z2)u2.

Let us now systematically verify the compatibility of ou
conjecture with the known properties of almost-Hermiti
matrices of various types.

The simplest test is to make sure that for a GaussiaĜ
such thatTrG2; 1/N TrH2 we are back to results proved i
t
in-

ms

-
e

go

l-

@13#. Indeed, for this case a typical eigenvalueg i;N21/2

!1, hencegi
21'2pn(x)g i!1 and in the limit of largeN

one can expandf (v) in a series. The first term~proportional
to v) vanishes in the limitN→` because of the symmetry o

the distribution of eigenvalues ofĜ around zero. Thus, the
leading term turns out to be proportional tov2. The corre-
sponding Gaussian integrals overk1,2 in Eq. ~3! can be per-
formed exactly, the resulting kernel reproducing that fou
in @13#.

Let us now consider the mean eigenvalue densityr(Z)
5K(Z,Z). The ‘‘physical’’ caseG5pWW† with a finite
numberM of open channels~i.e, with a finite numberM of
positivenon-zero eigenvaluesg i , i 51, . . . ,M ) was consid-
ered earlier in@5#. The result coincides with that following
from Eq. ~3!.

Actually, one can easily adopt the methods used in@5# to
satisfy oneself that the validity of the corresponding expr
sion is not restricted by the case of positiveg i , but rather
extends to an arbitrary set of eigenvalues. This fact provi
a proof of our conjecture on the level of the mean eigenva
density.

Let us now show that our conjecture survives a mu
more stringent test on the level of two-point correlations. F
this purpose let us invoke the notion of the so-called~energy
dependent! Wigner time delaydefined in terms of resonanc
positionsEk and widthsGk as ~see@5# for more details!

tw~E!5
1

M (
k

Gk

~E2Ek!
21Gk

2/4
. ~4!

Using this expression it is easy to relate the correlation fu
tion ^tW(E1)tW(E2)&c of the Wigner time delays at two dif
ferent energiesE1,25E6V/2 to the two-point correlation
function ^r(Z1)r(Z2)&c of the densities ofS-matrix poles in
the complex planeZ5x2 iY. Considering the energy differ
enceE12E25V to be comparable with the mean level spa
ing D5(n(E)N)21 and exploiting the fact that both th
mean density ^r(x,Y)& and the cluster function
Y2(x1 ,x2 ,Y1 ,Y2) change withx5(x11x2)/2 on a scale
much larger thanD, one can perform thex2 integration
explicitly. After this it is convenient to pass to the scale
variables:

tW̃5
MD

2p
tw ; ṽ5

pV

D
; y5

pY

D
; vx5

pv

D
,

with v5x12x2 , to rescale the cluster function and the de
sity as follows:

r̃E~y!5
D2

p
^r~E,Y!&; Ỹ2~E,vx ,y1 ,y2!

5
D4

p2 Y2~E,v,Y1 ,Y2!

and to make a Fourier transformation with respect toṽ.
These manipulations allowed us to write down the relat
we were looking for in quite a compact form:
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1

p E
2`

`

dṽei ṽtK t̃WS E1
D

p
ṽ D t̃WS E2

D

p
ṽ D L

c

5E
0

`

dye22tyr̃E~y!

2E
2`

`

dvxE
0

`

dy1E
0

`

dy2e2t~y11y21 ivx!

3Ỹ2~E,vx ,y1 ,y2! ~5!

Such a relation between the correlation function of tim
delays and two-point cluster function provides a possibi
of the most nontrivial test of our conjecture. Indeed, both
left-hand side and the first term in the right-hand side
known from independent calculations@5#, which allows us to
rewrite the Eq.~5! for t.0 as

2E
2`

`

dvxE
0

`

dy1E
0

`

dy2e2t~y11y21 ivx!Ỹ2~E,vx ,y1 ,y2!

5
1

2
u~22t !E

2min~ t,1!

12t

dl)
i 51

M
gi1l

gi1l1t
~6!

Although this relation does not provide a possibility to e
tract the cluster function in a unique way, it is easy to sati
oneself that a direct substitution ofY2(Z1 ,Z2)
5uK(Z1 ,Z2)u2, with the kernel taken from Eq.~3! into the
left-hand side of Eq.~6! produces after rescaling and integr
tion exactly the right-hand side of Eq.~6!. This fact provides
the strongest support for our conjecture.

Having at our disposal the conjectured form of the clus
functionY(Z1 ,Z2) it is interesting to calculate other relate
quantities frequently used in applications, such as the s
tral form factor and the number variance. The calculation
the case of chaotic resonance scattering can be done a
the lines of the paper@13# and yields the form factor equal t

b~q1 ,q2 ,k!5E
2`

`

dvxE
0

`

dy1E
0

`

3dy2e2p i ~q1y11q2y21kv!Y2~Z1 ,Z2!

5
N4

2
u~n2uku!E

2~n2uku!

~n2uku!
dv

3)
i 51

M
~gin1v !22k2

~gin1v2 iq1!~gin1v2 iq2!
, ~7!

with n[n(X). The variance of the number of resonances
a strip 0,ReZ,L;2`,Im Z,` of the widthL5LxD com-
parable withD can be expressed in terms ofb(0,0,k); see
@13#. In particular, for the case of equivalent scattering ch
nels:gi5g, i 51, . . . ,M it is given by

S2~Lx!5Lx2
1

p2 E
0

1

dkk22 sin2~pkLx!

3E
21~12k!

~12k!

dv@12k2~g1v !22#M, ~8!
e
e

y

r

c-
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n

-

where we have usedpn(0)51. Let us discuss for simplicity
its typical features for the simplest case of only one op
channelM51. We are actually interested in deviations of t
number variance from its value known for Hermitian GU
matrices. One finds

dS~Lx!5S2~Lx!2S2
~GUE!~Lx!

5
2

p2 E
0

1

dk sin2~pkLx!
~12k!

g22~12k!2 . ~9!

Usually, one is interested in the behavior of the number v
ance forLx@1. Then, for anyg.1 one finds that the differ-
encedS(Lx) tends to a constant value 1/2p2 ln@g2/(g221)#.
The so-called ‘‘perfect coupling’’ caseg51 is known to be
in many respects specific@5#. Physically, it describes the
situation when the direct scattering is completely absent.
the level of number variance such a specificity is reflected
a logarithmically growing difference:dS(Lx)} ln Lx . As to
the small-distance behavior of the so-called nearest-neigh
distance distributionp(Z0 ,S!D), the leading term forS
→0 turns out to be always cubicp(Z0 ,S);S3, as long as
the system is open, in agreement with the existing numer
data@8#.

Let us now turn our attention to another class of rand
matrices with complex eigenvalues which attracted much
tention recently. Namely, we consider the ensemble
weakly asymmetric matrices with real elements. Such ma
ces can always be presented in the formH1A, with H being
real symmetric~hence, taken from GOE! andA being a real
antisymmetric:Ai j 52Aji such thatNTrA2;TrH2 in the
limit of large N. The case of matricesA with independent,
identically distributed Gaussian entries was studied by v
ous authors and by different methods@16,15,14#. In particu-
lar, the following unusual property was detected numerica
in @15# and proved analytically in@14,16#: the finite fraction
of eigenvalues stays on the real axis even forAÞ0. This fact
should be contrasted with the corresponding property of e
lier discussed weakly non-Hermitian matrices whose eig
values with probability unity have a finite imaginary part

long asĜÞ0. More recently, the interest to the ensemble
slightly asymmetric real matrices arose after the work
Efetov @16#, who discovered its relation to an interestin
problem of motion of vortices in disordered superconduct
with columnar defects@17#. Efetov calculated explicitly the
mean density of eigenvalues for the GaussianA. Shortly
after Halaszet al. @18# discovered that Efetov’s result de
scribes also the density of real eigenvalues of some matr
appearing in a random matrix approach to the problem
spontaneous breaking of chiral symmetry in QCD. An int
esting feature was that the perturbation considered in@18#
forcing the eigenvalues to leave the real line was not at
random. Translating these results to the ensemble of ran
real nonsymmetric matrices it is natural to expect that
antisymmetric perturbations of the typeA5(2m1

0
0

m10), with
a constantm being of the order of 1/AN Efetov’s formula
should still provide the correct eigenvalue density.

This fact motivated us to reconsider the problem of c
culation of the mean eigenvalue density for a general fix
real antisymmetric matrixA as it is done above for the cas
of almost-Hermitian matrices. Invoking again the argume
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of the rotational invariance, it is enough to consider the m
trices A of the following structure:A5diag(A1, . . . ,AN),
with each block Ai being 232 matrix of the form Ai

5(
2m i 0
0 m i), since an arbitrary antisymmetricA can be re-

duced to such a form by an orthogonal rotation. The den
of complex eigenvalues for the matrixH1A can be found by
a straightforward modification of the calculation presented
@16#. Introducing the scaled variabley5pn(X)N Im Z and
rescaling the density correspondingly:rX(y)5^r(Z)&/
@Npn(X)#2, one finds

rx~y!5d~y!E
0

1

du e1/2[f A~pnu!1 f A~2pnu!]

1
1

2p E
0

1

duu sinh~ uyuu!e1/2[f A~pnu!1 f A~2pnu!]

3E
uyu

`

dsE
2`

`

dk e2 iks2~1/2![ f A~ ipnk!1 f A~2 ipnk!] ,

~10!

where the functionf A(z) is given again by Eq.~2! with g i
replaced bym i .

From the derived expression one immediately infers t
if a typical m i is of the order ofN21/2, the functionf A(v)
can be expanded up to a first nonvanishing order such
f A(v)1 f A(2v)}TrA2v2 and the corresponding expressio
coincides with that found by Efetov. As such, Efetov’s fo
mula is indeed applicable also for constant matricesA of the
type described above.

We see that the most striking qualitative features of
Efetov’s formula: ~i!a nonvanishing density of real eigen
e

l o
er
-

ty

n

t

at

e

values and~ii ! a linear increase withuyu of the probability
density to have a finite imaginary part-persist for any an
symmetric perturbationA. The strongest quantitative devia
tion from Efetov’s result occurs in the case of finite-ra
perturbationsA such thatm i50 for i .M . In particular, one
can show that if at least one of the quantitiesgi

51/2pn (m i1m i
21). is equal to unity, the mean density d

cays asymptotically asr(y@1)}y22. Such a slow power
law decay should be contrasted with the Gaussian case w
one always has a very sharp cutoff of the density for la
enoughy. For the general case of a finite-rank antisymmet
perturbation such thatgiÞ1 the density is cut exponentiall
at y;(gi21)21.

In conclusion, we put forward a conjecture on statistics
S-matrix polesZi for systems with broken time-reversal in
variance and verified that it is perfectly compatible with t
existent knowledge on quantum chaotic scattering. In p
ticular, our conjecture allowed us to reproduce statisti
characteristics of Wigner time delays known from indepe
dent calculations. We analyzed the ensuing two-point sta
tical measures as, e.g., spectral form factor, number varia
and small distance behavior of the nearest-neighbor dista
distributionp(Z0 ,S). In the final part of the paper we calcu
lated the density of complex eigenvalues of an ensemble
real weakly asymmetric matrices. The expression obtai
generalizes the recent result by Efetov@16# to the case of an
arbitrary antisymmetric perturbation.
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