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Statistics of S-matrix poles for chaotic systems with broken time reversal invariance:
A conjecture
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In the framework of a random matrix description of chaotic quantum scattering the positi@maffrix
poles are given by complex eigenvalugsof an effective non-Hermitian random-matrix Hamiltonian. We put
forward a conjecture on statistics @f for systems with broken time-reversal invariance and verify that it
allows to reproduce statistical characteristics of Wigner time delays known from independent calculations. We
analyze the ensuing two-point statistical measures as, e.g., spectral form factor and the number variance. In
addition, we find the density of complex eigenvalues of real asymmetric matrices generalizing the recent result
by Efetov[Phys. Rev. B56, 9630(1997].
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One of the basic concepts in chaotic quantum scattering iadvanced variantgl0]) the results available on statistics of
the notion of resonances, representing long-lived intermediS-matrix poles arei) the joint probability density of all reso-
ate states to which bound states of a “closed” system ar@ances for the system with one open charligd) (ii) the
converted due to coupling to continua. On a formal levelmean density ofS-matrix poles in the complex plane for
resonances show up as poles of M& M scattering matrix ~ large number of open channé¥s~N>1 [7], (iii) the mean
S.(E) occurring at complex energie§,=E,—(i/2)[,  density ofS-matrix poles for arbitraryM <N [5]. In particu-
where E, is called the position and’, the widths of the lar, no information gbout two-point correlations between dif-
corresponding resonance, altlis the number of channels ferent poles is available to our best knowledge.
open in a given interval of energies. Recently, advances in '€ Situation improves drastically if one considétsio

computational techniqgues made available resonance patterHE taken from th? Gaussugn unitary ef‘se"ma and
of high accuracy to be obtained for realistic models Ofreplaces the physically motivated matkixintroduced above

atomic and molecular chaotic systefits. by an (unphysical NXN Hermitian matrixA, taken also

As is well-known, universal statistical properties of boundfrom GUE. : . . o
states in the re imé of quantum chaos have their pattern in The case in which the variance of bdthandA coincide
o gm q P was studied long ago by Ginibfd 1], who managed to find
statistics of real eigenvalues of large random matrj€3].

Th hod d d i d _ h all the correlation functions of the eigenvalues in the com-
e methods to adjust random matrix description to the casgoy njane. They turned out to be quite different from those

of resonance scattering in open quantum systems are VeRf,on for the self-adjoint Gaussian random matrices with

well known since the pioneering work by the Heidelberg g eigenvalues, studied by Wigner, Dyson, Mehta and oth-
group[4]. The method proved to be very fruitful and allowed g5 [2].

one to calculate different universal characteristics of chaotic At the same time it is clear that reducing the variancé of

scattering; see the revief6] for a thorough discussion of 55 compared to that ¢ drives the ensemble towards GUE.
recent developments. _ _ The existence of a nontrivial regime weak non-Hermiticity
In the framework of this approach the S-matrix poles,yag recognized in our preceding woki,13. This regime
(resonancegsare just the complex eigenvalues of an effectiveyccurs when a2~ 1/N TrH2 in the limit of largeN. Under
random matrix Hamiltoniafte=H —il'. HereH is alarge  this condition the imaginary paiY, of a typical complex
self-adjointN X N matrix of appropriate symmetry serving to eigenvaluez, = x,—iY, is comparable with the measepa-
describe the statistical properties of #lesedcounterpart of (540 A={(X,—X¢11)~ 1/N between neighboring eigenval-

the scattering system under consideration. WeN matrix 65 along the real axis. Exploiting the method of orthogonal

I'is t_o describe a possibility of trgnsitions from the Statespolynomials we demonstratdd3] that all statistical proper-
described byH to the outer world viaM open channels and  jag of{=H —iA in this casgwhich we refer to as “almost

is related to theNX M matrix W of transition amplitudes as GUE”) can be described in terms of a ker(Z,,Z,) de-
I'=7WW'. Such a form is actually dictated by the require- pending on two complex coordinatés ,.

ment of S-matrix unitarity and ensures that all tiS&matrix In particular, the mean eigenvalde density around the
poles are in the lower half-plane of complex energies as "€0int Z in the complex planen(2) = (=, 8@(Z-2,)) is

quired by causality. _ _ _ given by p(Z)=K(Z,Z) and the two-pointluster function
In spite of quite substantial analytid#,7,5 and numeri- Y,(Z4,Z,) defined via the relation

cal [8] work on properties ofH{.¢; our actual knowledge of
resonance statistics is rather limited. Apart from the simplest 2
perturbative Porter-Thomas treatmgdit (as well as its more (p(Z1)p(Z2))e=(p(2))8P(Z1=Z,) — Vo(Z1,Z5) (D)
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is given by),(Z,,Z,)=|K(Z;,Z,)|?>. Here and henceforth
we use the notatiofAB).=(AB)—(A)(B), with brackets
standing for the ensemble average.
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[13]. Indeed, for this case a typical eigenvalye~N~%?
<1, hencegi_1~2m/(x) ;<1 and in the limit of largeN
one can expanfl(v) in a series. The first terrfproportional

Unfortunately, such a detailed information is of no directto v) vanishes in the limiN— o because of the symmetry of
use for the case of chaotic scattering. Nevertheless, the "ﬂhe distribution of eigenvalues df around zero. Thus. the

sights provided by the “almost GUE"” case combined with

with broken time-reversal invariand®] allowed us to put

forward a well-grounded conjecture about statistics of com

plex eigenvalues of weakly non-Hermitian ensemble of th
typeH —iT" for any given complex Hermitian matrik, pro-

videdH is taken from GUE. This conjecture forms the main

part of the present paper.

Before formulating the conjecture, let us recall that the

GUE ensemble is amvariant one, i.e., its statistics are in-
dependent of the basis chosen. Therefore, one always can

to the eigenbasis of the matrix and consider it to be diag-
onal with eigenvalues;, i=1,... N. In what follows we

find it convenient to characterize the matfi>by the follow-
ing function:

1+ 2

v
0= w1 )

where g;=1/27v(x) (yi+ 7 1) and v(x)= 1/27r J4—X?

leading term turns out to be proportional #8. The corre-

rT%%onding Gaussian integrals over, in Eq. (3) can be per-

formed exactly, the resulting kernel reproducing that found

e'ln [13].

Let us now consider the mean eigenvalue dengit¥)
=K(Z,Z). The “physical” casel'=7WW' with a finite
numberM of open channel§.e, with a finite numbeM of

positivenon-zero eigenvalueg;, i=1, ... M) was consid-
ered earlier in5]. The result coincides with that following
from Eq. (3).

gOActuaIIy, one can easily adopt the methods usefbirto
satisfy oneself that the validity of the corresponding expres-
sion is not restricted by the case of positiyg, but rather
extends to an arbitrary set of eigenvalues. This fact provides
a proof of our conjecture on the level of the mean eigenvalue
density.

Let us now show that our conjecture survives a much
more stringent test on the level of two-point correlations. For
this purpose let us invoke the notion of the so-calledergy
dependentWigner time delaydefined in terms of resonance

stands for the Wigner semicircular density of real eigenvalPositionsE, and widthsI'y as(see[5] for more detaily

ues of the Hermitian paitl of the matricesH.

Let us define now the regime of weak non-Hermiticity as

such whenTrI'2~ 1/N TrH2. Under this condition the func-
tion f1-(v) defined above has a finite limit whéf—c~. We

also expect that in the regime of weak non-Hermiticity a

nontrivial behavior occurs on the scale HErImZ,
~Re@;—Z,)~N"1. To take this fact into account explicitly,
it is convenient to use the parametrizatidn =X+ w/2N
—iy1 /N, with y; 5,0 being fixed in the limitN—oo.

Now we put forward the followingonjecture:

The statistics of eigenvalueg of the corresponding al-
most Hermitian ensembl@{¢; in the limit N>1 is com-
pletely determined by the kernel

N
K(Z,,Z,)= mel></2(yz*yl)

XJWVSC(X) due—u(y1+y2)+iUw+fr(u)
— mrg(X)

X f dk,e~ kw1~ fr(=ike/2)

1/2

Xfoc dkye~ ka2~ fr(=ikz/2) (3)

In particular, the mean eigenvalue density(Z)
=(26®)(Z-2y)) is given byp(Z)=K(Z,Z) and the two-
point cluster function i9,(Z;,2Z,) =|K(Z1,2Z,)|?.

Let us now systematically verify the compatibility of our

conjecture with the known properties of almost-Hermitian

matrices of various types.

The simplest test is to make sure that for a Gaussian
such thafTrI'?~ 1/N TrH? we are back to results proved in

1

r
W(E)= 14 2 :

(E—Ep2+T2/4

4

Using this expression it is easy to relate the correlation func-
tion { rw(E1) Tw(E,)). of the Wigner time delays at two dif-
ferent energieE; ,—E+()/2 to the two-point correlation
function{p(Z,)p(Z,)). of the densities o5-matrix poles in
the complex plan&=x—iY. Considering the energy differ-
enceE; — E,=() to be comparable with the mean level spac-
ing A=(»(E)N) " and exploiting the fact that both the
mean density (p(x,Y)) and the cluster function
Wo(X1,X2,Y1,Y5) change withx=(x;+X,)/2 on a scale
much larger thamd, one can perform the— integration
explicitly. After this it is convenient to pass to the scaled
variables:

— MA

W= 5 Tw, W=

with w=X;—X,, to rescale the cluster function and the den-
sity as follows:

- A? -
PE(Y):?@(E,Y»; Vo(E,04,Y1,Y2)

A4
= ;Z yZ(ElinleZ)

and to make a Fourier transformation with respectato
These manipulations allowed us to write down the relation
we were looking for in quite a compact form:
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1 (» ~ =]~ A\ A where we have usettv(0)=1. Let us discuss for simplicity
p f dwe' | Ty| E+ ZolwE-—o its typical features for the simplest case of only one open
o ¢ channelM = 1. We are actually interested in deviations of the
© _ number variance from its value known for Hermitian GUE
= fo dye *Ype(y) matrices. One finds
- o fw SE(L)=3,(L)—35YF (L)
_ —t(y1tyotioy)
Jloodwxjo dylfo dyze 2 (1 _ (1-k)
Z?f dkSInz(Wka)m (9)
~ 0 - -
XyZ(E!wX!ylvyZ) (5)

i i , . Usually, one is interested in the behavior of the number vari-
Such a relation between the correlation function of time,.e forl.>1. Then. for anyg>1 one finds that the differ-
delays and two-point cluster function provides a possibilityencegz(l_X ) tends t(; a constant value ¥2In[g%/(g?—1)].
of the most nontrivial test of our conjecture. Indeed, both ther,4 so-caﬁed “perfect coupling” casg=1 is known to be

left-hand S|d_e and the first term_ln the rl_ght-hand side are, many respects specifits]. Physically, it describes the
known from independent calculatioffs], which allows Us to  jy,ation when the direct scattering is completely absent. On
rewrite the Eq(5) for t>0 as the level of number variance such a specificity is reflected in
. . . a logarithmically growing differences>(L,)«InL,. As to
_f dwxf dylf dy,e tity2 ey (B oy, ,y,) the small-distance behavior of the so-called nearest-neighbor
—o 0 0 distance distributionp(Zy,S<A), the leading term forS
M —0 turns out to be always cubja(Z,,S)~S?, as long as
_ Eﬁ(Z-t)flit o] gitA (6 the system is open, in agreement with the existing numerical
2 —mint,y =1 git A+t data[8].
Let us now turn our attention to another class of random
Although this relation does not provide a possibility to ex- matrices with complex eigenvalues which attracted much at-
tract the cluster function in a unique way, it is easy to satisfytention recently. Namely, we consider the ensemble of
oneself that a direct substitution of),(Z;,Z,) weakly asymmetric matrices with real elements. Such matri-
=|K(Z;,Z,)|%, with the kernel taken from Eq3) into the  ces can always be presented in the foirr A, with H being
left-hand side of Eq(6) produces after rescaling and integra- real symmetrighence, taken from GOEandA being a real
tion exactly the right-hand side of E(6). This fact provides antisymmetric:A;;= —A;; such thatNTrA2~TrH? in the
the strongest support for our conjecture. limit of large N. The case of matrice8 with independent,
Having at our disposal the conjectured form of the clusteiidentically distributed Gaussian entries was studied by vari-
function )(Z,,Z,) it is interesting to calculate other related ous authors and by different methdd$,15,14. In particu-
quantities frequently used in applications, such as the spetar, the following unusual property was detected numerically
tral form factor and the number variance. The calculation forin [15] and proved analytically ifi14,16: the finite fraction
the case of chaotic resonance scattering can be done alonfeigenvalues stays on the real axis evenXer0. This fact
the lines of the papdn 3] and yields the form factor equal to should be contrasted with the corresponding property of ear-
lier discussed weakly non-Hermitian matrices whose eigen-
b(ql,qz,k)zf dwxf d)ﬁf values vAwth probability unity haV(.a a finite imaginary part as
—w 0 0 long asI'+# 0. More recently, the interest to the ensemble of
slightly asymmetric real matrices arose after the work by

X dy,e2™ (@1t azy2tke)y, (7. 7.y Efetov [16], who discovered its relation to an interesting
N4 (v—IK)) problem of motion of vortices in disordered superconductors
=—=6(v— |k|)j dv with columnar defect$§17]. Efetov calculated explicitly the
2 —(v=Ik) mean density of eigenvalues for the GaussianShortly
(giv+v)2—K2 after Halaszet al. [18] discovered that Efetov’s result de-

X

M
i _ , (7 scribes also the density of real eigenvalues of some matrices
i=1 (givtv—iqy)(givtv—iqy) appearing in a random matrix approach to the problem of
_ _ ~ spontaneous breaking of chiral symmetry in QCD. An inter-
with VEV(X). The variance of the number of resonances |nesting feature was that the perturbation Considereﬁlsj
a strip 0<ReZ<L;—<Im Z<x of the widthL=L,A com-  forcing the eigenvalues to leave the real line was not at all
parable withA can be expressed in terms bf0,0k); see  random. Translating these results to the ensemble of random
[13]. In particular, for the case of equivalent scattering chanreal nonsymmetric matrices it is natural to expect that for

nels:gi=g, i=1,... M itis given by antisymmetric perturbations of the tyge=(_°,; #3%), with
1 a constantu being of the order of 3/N Efetov’s formula
So(L)=L— — f dkk2 sir?(mkL,) shoulq still prow_de the correct e|genvalue density.
7™ Jo This fact motivated us to reconsider the problem of cal-

Lk culation of the mean eigenvalue density for a general fixed
< f( ) do[1—Kk3(g+v) 2 ®) real antisymmetric matriA as it is done above for the case
—1(1-k) ' of almost-Hermitian matrices. Invoking again the arguments
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of the rotational invariance, it is enough to consider the mavalues and(ii) a linear increase withy| of the probability

trices A of the following structure:A=diag@A,...Ay),  density to have a finite imaginary part-persist for any anti-
with each blockA; being 2x2 matrix of the form A; symmetric perturbatiol. The strongest quantitative devia-
=(° *), since an arbitrary antisymmetris can be re- tion from Efetov’s result occurs in the case of finite-rank

— M 0 . B . .
duced to such a form by an orthogonal rotation. The densityerturbatlonsﬂ\ such thatu; =0 for i>M. In particular, one

of complex eigenvalues for the mattik+ A can be found by c_an show tha}l i . at least one of the quantlt.|e3$
a straightforward modification of the calculation presented in~ /27v (it i ). is equal to unity, the mean density de-

i -3
[16]. Introducing the scaled variable=7»(X)N ImZ and ~ C2ys asymptotically ap(y>1)=y ° Such a slow power
rescaling the density correspondinglyx(y)=(p(Z))/ law decay should be contrasted with the Gaussian case when

[N7(X)]?, one finds one always has a very sharp cutoff of the density for large
enoughy. For the general case of a finite-rank antisymmetric
1 erturbation such thag;# 1 the density is cut exponentiall
px(y):5(y)J’0 du el/Z[fA(vTVU)+fA(—7TVu)] gtyw(gi_l)*l_ ql % p y
In conclusion, we put forward a conjecture on statistics of
1 11 ) LI2[f A(r9) +  a(— 0] S—matrix polesZ; _fgr systems with broken time—feversgl in-
ton fo duu sinh(|y|u)e"ia A variance and verified that it is perfectly compatible with the
existent knowledge on quantum chaotic scattering. In par-
o o , _ . ticular, our conjecture allowed us to reproduce statistical
Xf de dk g ke (WALTAGmHOFTa=Tmrial, characteristics of Wigner time delays known from indepen-
i o dent calculations. We analyzed the ensuing two-point statis-
(100 tical measures as, e.g., spectral form factor, number variance,
and small distance behavior of the nearest-neighbor distance
distributionp(Zy,S). In the final part of the paper we calcu-
replaced byp; . , , _ _ lated the density of complex eigenvalues of an ensemble of
From the derived expression one immediately infers thates) \weakly asymmetric matrices. The expression obtained

. . . 71/2 B
if a typical p; is of the order ofN™ "% the functionfa(v)  generalizes the recent result by Efefdé] to the case of an
can be expanded up to a first nonvanishing order such th%trbitrary antisymmetric perturbation.

fa(v)+fa(—v)xTrA%? and the corresponding expression

coincides with that found by Efetov. As such, Efetov’s for-  Y.F. is obliged to V. Sokolov and B. Khoruzhenko for

mula is indeed applicable also for constant matriéesf the ~ comments and encouragement. The work was supported by

type described above. Grant No. SFB 237 “Disorder and Large Fluctuations,”
We see that the most striking qualitative features of theVlll-2 “Russian State Program for Statistical Physics” and

Efetov’s formula: (i)a nonvanishing density of real eigen- Grant No. RFBR 96-02-18037&1.T.).

where the functiorf 5(z) is given again by Eq(2) with y;

[1] R. Blumel, Phys. Rev. A4, 5420(1996; V. A. Mandelshtam Nucl. Phys. A582, 223 (1995.
and H. S. Taylor, J. Chem. Soc., Faraday Tra®3. 847 [8] W. Johnet al, Phys. Rev. Lett67, 1949(199)); S. Drozdz
(1997). et al, Phys. Rev. Lett76, 4891(1996; T. Gorinet al, Phys.
[2] O. Bohigas, inChaos and Quantum PhysjcBroceedings of Rev. E56, 2481(1997).
the Les Houches Summer School of Theoretical Physics, Ses{9] C. E. Porter Statistical Theory of Spectra: Fluctuatiof&ca-
sion LII, edited by M. J. Giannoret al. (North Holland, Am- demic, New York, 196b
sterdam, 1991 p. 91. [10] W. H. Miller et al,, J. Chem. Phy93, 5657(1990; Y. Alhas-
[3] B. L. Altshuler and B. D. Simons, iMesoscopic Quantum sid and C. H. Lewenkopf, Phys. Rev. Let5, 3922(1995.

Physics Proceedings of the Les Houches Summer School of11] J. Ginibre, J. Math. Phy$, 440(1965.
Theoretical Physics, Session LXI, 1994, edited by E. Akker-[12] Y. V. Fyodorov, B. Khoruzhenko, and H.-J. Sommers, Phys.

manset al. (Elsever, New York, 1996 Lett. A 226, 46 (1997).
[4] J. J. M. Verbaarschot, H. A. Weideniter, and M. R. Zirn-  [13] Y. V. Fyodorov, B. Khoruzhenko, and H.-J. Sommers, Phys.
bauer, Phys. Refd29 367 (1985. Rev. Lett.79, 557 (1997; e-print chao-dyn/9802025.
[5] Y. V. Fyodorov and H.-J. Sommers, J. Math. Ph$8, 1918  [14] A. Edelman, J. Multivariate Anab0, 203 (1997.
(1997; JETP Lett.63, 1026(1996. [15] H.-J. Sommerst al, Phys. Rev. Lett60, 1895 (1988; N.
[6] V. V. Sokolov and V. G. Zelevinsky, Phys. Lett. 02, 10 Lehmann and H.-J. Sommeliibjd. 67, 941 (1991).
(1989; Nucl. Phys. A504, 562 (1989; H. J. Stekmann and [16] K. B. Efetov, Phys. Rev. 56, 9630(1997.
P. Seba, J. Phys. 81, 3439(1998. [17] N. Hatano and D. R. Nelson, Phys. Rev. L&, 570(1996.

[7] F. Haakeet al,, Z. Phys. B88, 359(1992; N. Lehmanret al,, [18] M. A. Halaszet al, Phys. Rev. 066, 7059(1997).



